

Contents

Background

Methods

Stimuli

Procedure

Behavioural data

fMRI paradigm

Univariate contrasts

Representationa

Similarity Analysis

Summary

How does learning to read shape the neural representation of spoken and written language?

Adam Jowett

Dr Joanne Taylor¹ Dr Angelika Lingnau² Professor Kathy Rastle²

¹Aston University ²Royal Holloway, University of London

Background

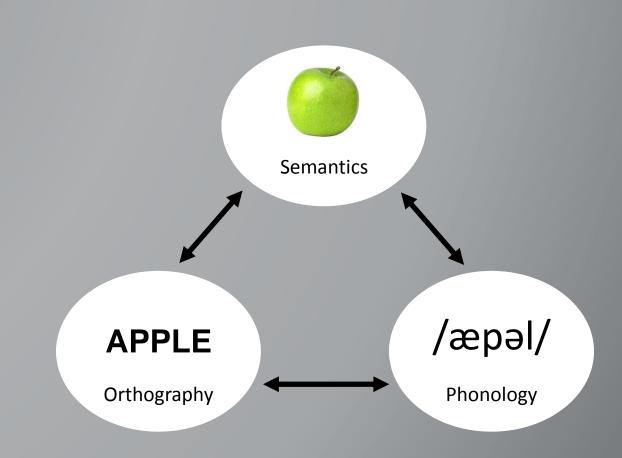
Methods

Stimuli

Procedure

Behavioural data

fMRI paradigm


Univariate contrasts

Representationa

Similarity Analysis

Summary

Background

Background

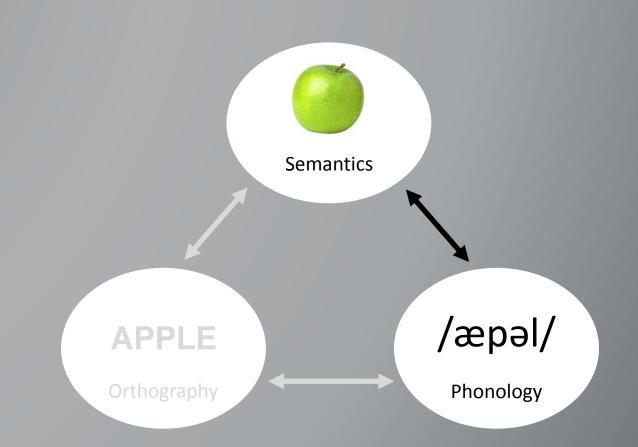
Methods

Stimuli

Procedure

Behavioural data

fMRI paradigm


Univariate contrasts

Representationa

Similarity Analysis

Summary

Background

Before acquiring skills in reading and writing, most of us have developed relative competence in understanding spoken language

Background

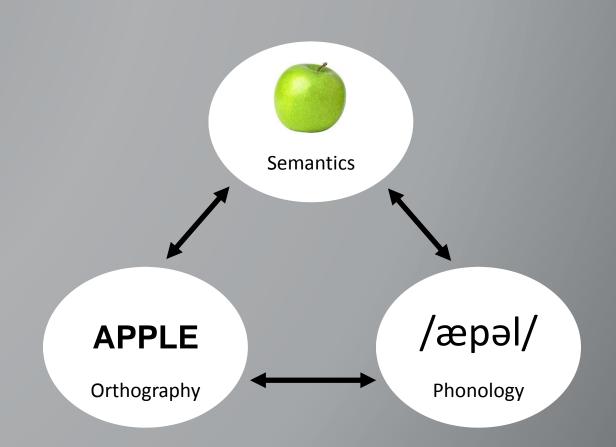
Methods

Stimuli

Procedure

Behavioural data

fMRI paradigm


Univariate contrasts

Representationa

Similarity Analysis

Summary

Background

Learning to read requires acquiring mappings from orthography onto existing phonological and semantic representations

Contents

Background

Methods

Stimuli

Procedure

Behavioural data

fMRI paradigm

Univariate contrasts

Representationa

Similarity Analysis

Summary

Background

Languages vary in the way that writing expresses the sounds and meanings of spoken language

Contents

Background

Methods

Stimuli

Procedure

Behavioural data

fMRI paradigm

Univariate contrasts

Representationa

Similarity Analysis

Summary

Background

Languages vary in the way that writing expresses the sounds and meanings of spoken language

BEACH	PEACH
/biːʧ/	/piːʧ/

Alphabetic languages = High orthographic transparency

Information about phonological structure within orthography Each sound usually mapped to one orthographic symbol

Background

Methods

Stimuli

Procedure

Behavioural data

fMRI paradigm

Univariate contrasts

Representationa

Similarity Analysis

Summary

Background

Languages vary in the way that writing expresses the sounds and meanings of spoken language

Logographic languages = Low orthographic transparency

Less information about phonological structure within orthography Each sound usually mapped to multiple orthographic symbols

Background

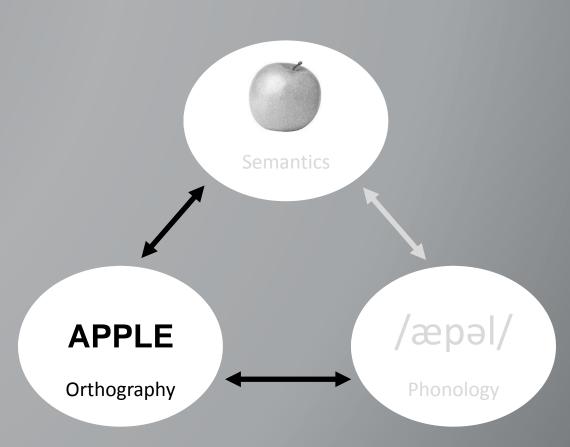
Methods

Stimuli

Procedure

Behavioural data

fMRI paradigm


Univariate contrasts

Representationa

Similarity Analysis

Summary

Background

Such differences in orthographic structure impacts on the nature of reading acquisition...

Contents

Background

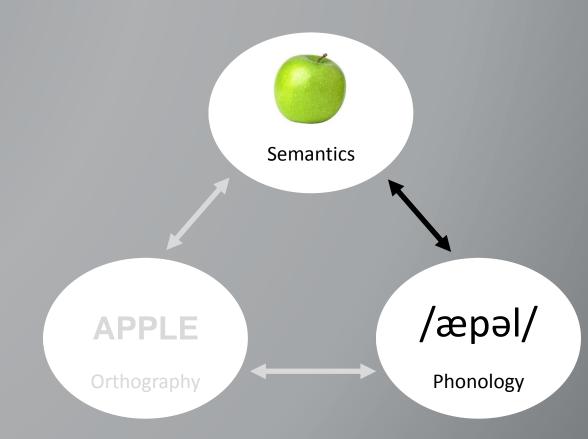
Methods

Stimuli

Procedure

Behavioural data

fMRI paradigm


Univariate contrasts

Representationa

Similarity Analysis

Summary

Background

...as well as wider impacts on existing spoken language systems ²

2. Rastle et al. (2011) **7**

Contents

Background

Methods

Stimuli

Procedure

Behavioural data

fMRI paradigm

Univariate contrasts

Representationa

Similarity Analysis

Summary

Methods

Language training study combining behavioural testing and fMRI analyses

Contents

Background

Methods

Stimuli

Procedure

Behavioural data

fMRI paradigm

Univariate contrasts

Representationa

Similarity Analysis

Summary

Methods

Language training study combining behavioural testing and fMRI analyses

Participants

24 monolingual native English speakers (16 females) Aged between 19-34 (*M* = 22.16, *SD* = 3.97)

Contents

Background

Methods

Stimuli

Procedure

Behavioural data

fMRI paradigm

Univariate contrasts

Representationa

Similarity Analysis

Summary

Methods

Language training study combining behavioural testing and fMRI analyses

Participants

24 monolingual native English speakers (16 females) Aged between 19-34 (*M* = 22.16, *SD* = 3.97)

Within subjects design

All participants learned two artificial languages with alphabetic and logographic writing systems

Contents

Background

Methods

Stimuli

Procedure

Behavioural data

fMRI paradigm

Univariate contrasts

Representational

Similarity Analysis

Summary

Methods

Language training study combining behavioural testing and fMRI analyses

Participants

24 monolingual native English speakers (16 females) Aged between 19-34 (*M* = 22.16, *SD* = 3.97)

Within subjects design

All participants learned two artificial languages with alphabetic and logographic writing systems

Artificial orthographies

Each language contained 24 pseudowords, each denoted by visual, spoken, and semantic components

Background

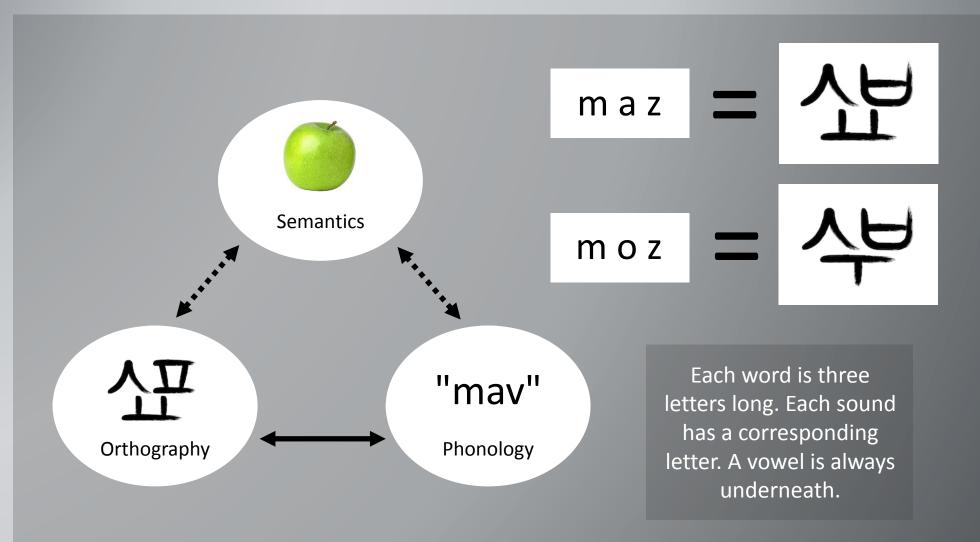
Methods

Stimuli

Procedure

Behavioural data

fMRI paradigm


Summary

Univariate contrasts

Contents



Alphabetic

Stimuli inspired by – 3. Taylor et al. (2017); 4. Mei et al. (2014) **9**

Summary

ROYAL

OF LONDON

Contents

Background

Methods

Stimuli

Procedure

Behavioural data

fMRI paradigm

Univariate contrasts

HOLLOWAY

Stimuli inspired by – 3. Taylor et al. (2017); 4. Mei et al. (2014) **10**

Contents

Background

Methods

Stimuli

Procedure

Behavioural data

fMRI paradigm

Univariate contrasts

Representational

Similarity Analysis

Summary

Individual	Day 1	Day 2	D3	D4	D	5 D6		D7	D8	D9	Day 10	Day 11	Day 12
differences	Pre-e	xposure				Train	ing	g			Testing	Scanning	
Spelling	Repetition	Repetition	Picture Naming								Picture Naming	Auditory Semantic	Auditory Semantic
Spoonerisms	Picture Search	Reading Aloud	Picture Search								Reading Aloud	Monitoring	Monitoring
VocabShipley	Picture Naming	Auditory	Reading Aloud								Saying Meaning	Visual Semantic	Visual Semantic
Towre-2		Orthographic Search	Au	dito	ry						Auditory Shadowing	Monitoring	Monitoring
			Or	Orthographic Search				ch			Phoneme Reversal		
			Saying Meaning								Auditory		
			Semantic								Lexical Decision		
			Or	Orthographic Search							Visual		
											Lexical Decision		
											Auditory Semantic		
											Monitoring (practice)		
											Visual Semantic		
											Monitoring (practice)		

Procedure

Contents

Background

Methods

Stimuli

Procedure

Behavioural data

fMRI paradigm

	Day 1	Day 2	D2	DA		5 D6		77	08	D9	Day 10	Day 11	Day 12
Individual	Day 1	Day 2	05	04					0	Da	Day 10	Day 11	Day 12
differences	Pre-e	xposure				Traini	ng				Testing	Scan	ning
Spelling	Repetition	Repetition	Picture Naming								Picture Naming	Auditory Semantic	Auditory Semantic
Spoonerisms	Picture Search	Reading Aloud	Picture Search								Reading Aloud	Monitoring Visual Semantic	Monitoring Visual Semantic
VocabShipley	Picture Naming	Auditory	Rea	Reading Aloud		Saying Meaning							
Towre-2		Orthographic Search	Au	Auditory Auditory Shadowing					Auditory Shadowing	Monitoring	Monitoring		
			Or	Orthographic Search							Phoneme Reversal		
			Say	Saying Meaning							Auditory		
			Semantic				Lexical Decision						
			Or	Orthographic Search				ch			Visual		
											Lexical Decision		
											Auditory Semantic		
											Monitoring (practice)		
											Visual Semantic		
											Monitoring (practice)		

Procedure

Background

Methods

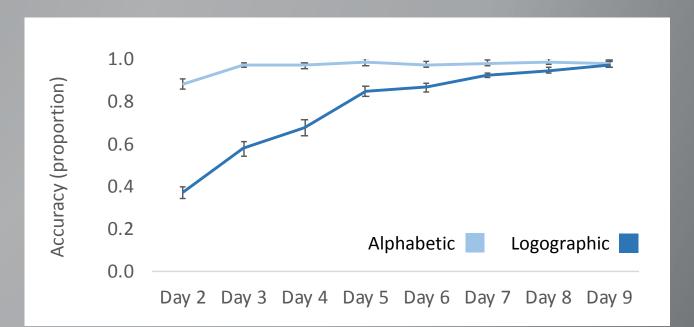
Stimuli

Procedure

Behavioural data

fMRI paradigm

Univariate contrasts


Summary

Reading Aloud

See trained word

Say pronunciation "bev"

Alphabetic writing system benefits accuracy and speed of Reading Aloud during training and testing = alphabetic easier to learn and faster to retrieve

Background

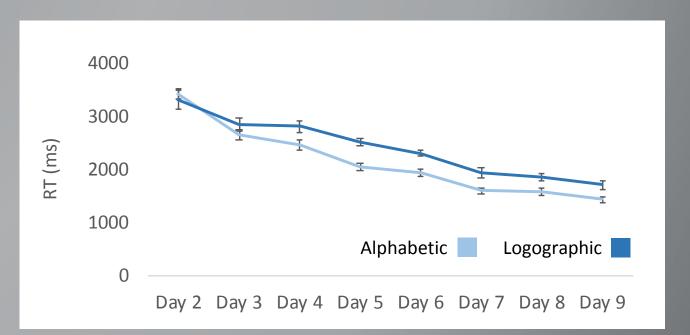
Methods

Stimuli

Procedure

Behavioural data

fMRI paradigm

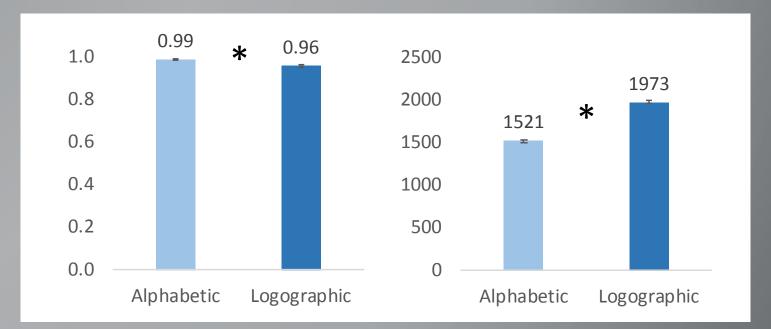

Univariate contrasts

Summary

Reading Aloud

See trained word Say pronunciation "bev"

Alphabetic writing system benefits accuracy and speed of Reading Aloud during training and testing = alphabetic easier to learn and faster to retrieve



Reading Aloud

See trained word

Say pronunciation "bev"

Alphabetic writing system benefits accuracy and speed of Reading Aloud during training and testing = alphabetic easier to learn and faster to retrieve

Contents

Background

Methods

Stimuli

Procedure

Behavioural data

fMRI paradigm

Univariate contrasts

Summary

Contents

Background

Methods

Stimuli

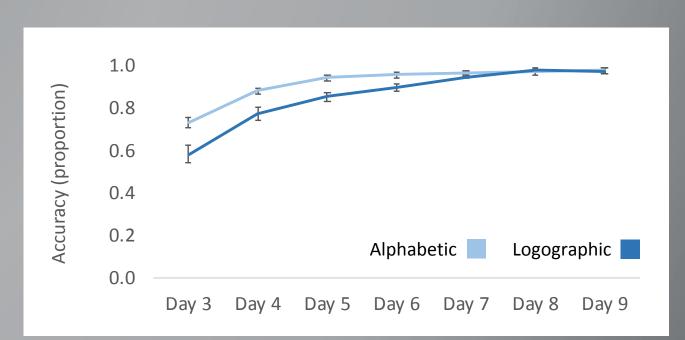
Procedure

Behavioural data

fMRI paradigm

Univariate contrasts

Representationa


Similarity Analysis

Summary

Saying the Meaning

Say meaning "apple"

See trained word 호주

Alphabetic benefits accuracy but logographic benefits speed during training. Logographic was faster during testing with no differences in accuracy.

ROYAL HOLLOWAY OFLONDON

Contents

Background

Methods

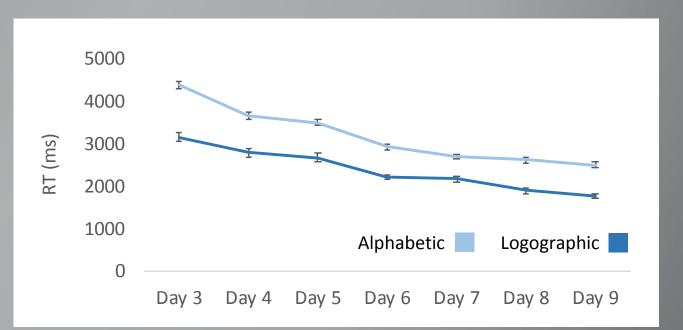
Stimuli

Procedure

Behavioural data

fMRI paradigm

Univariate contrasts


Summary

Saying the Meaning

See trained word 🏼 🏹

Say meaning "apple"

Alphabetic benefits accuracy but logographic benefits speed during training. Logographic was faster during testing with no differences in accuracy.

ROYAL HOLLOWAY /FRS **OF LONDON**

Contents

Background

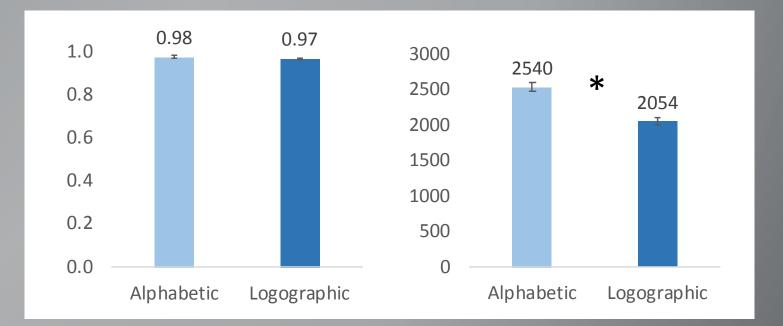
Methods

Stimuli

Procedure

Behavioural data

fMRI paradigm


Univariate contrasts

Summary

Saying the Meaning

See trained word

Say meaning "apple"

Alphabetic benefits accuracy but logographic benefits speed during training. Logographic was faster during testing with no differences in accuracy.

Contents

Background

Methods

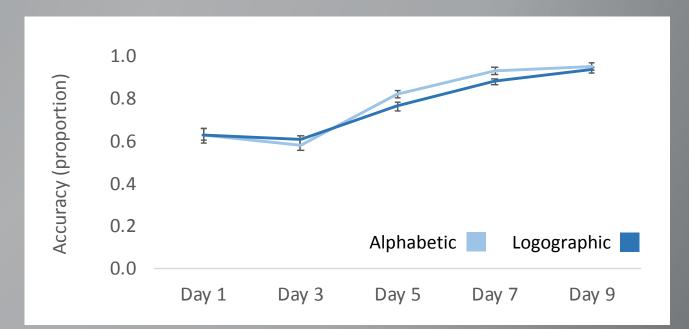
Stimuli

Procedure

Behavioural data

fMRI paradigm

Univariate contrasts


Representationa

Similarity Analysis

Summary

Picture Naming

See meaning "apple" Say pronunciation "bev"

No differences in accuracy or speed for Picture Naming during training and testing

Contents

Background

Methods

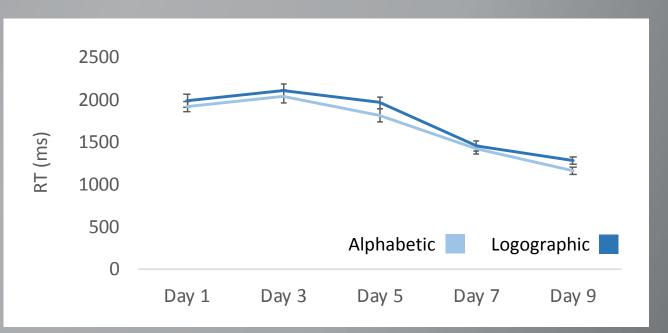
Stimuli

Procedure

Behavioural data

fMRI paradigm

Univariate contrasts


Representationa

Similarity Analysis

Summary

Picture Naming

See meaning "apple" Say pronunciation "bev"

No differences in accuracy or speed for Picture Naming during training and testing

Contents

Background

Methods

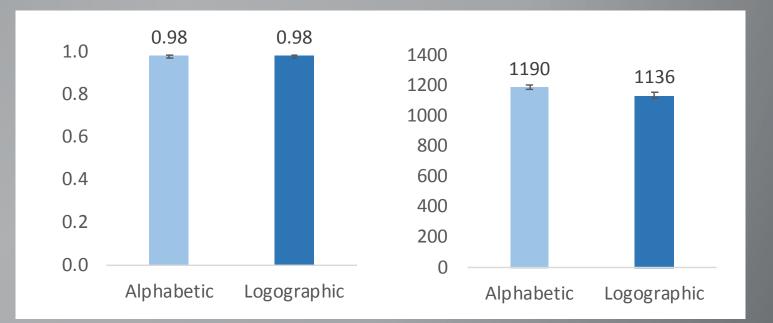
Stimuli

Procedure

Behavioural data

fMRI paradigm

Univariate contrasts


Representationa

Similarity Analysis

Summary

Picture Naming

See meaning "apple" Say pronunciation "bev"

No differences in accuracy or speed for Picture Naming during training and testing

Procedure

Contents

Background

Methods

Stimuli

Procedure

Behavioural data

fMRI paradigm

Univariate contrasts

Representational

Similarity Analysis

Summary

Individual	Day 1	Day 2	D3	D4	4 D	5 D6	1	D7	D8	D9	Day 10	Day 11	Day 12				
differences	Pre	exposure	Training			Training				Training					Testing	Scan	ining
Spelling Spoonerisms VocabShipley Towre-2	Pre- Repetition Picture Search Picture Naming	Repetition Reading Aloud Auditory Orthographic Search	Pic Rea Au Or Say	cture adin idito thog ying man	e Sea ng A ory grap g Me ntic	Train ming arch loud ohic Se ohic Se	ard	ch			TestingPicture NamingReading AloudSaying MeaningAuditory ShadowingPhoneme ReversalAuditoryLexical DecisionVisualLexical DecisionAuditory SemanticMonitoring (practice)	Scan Auditory Semantic Monitoring Visual Semantic Monitoring	Auditory Semantic Monitoring Visual Semantic Monitoring				
_											Visual Semantic Monitoring (practice)						

Contents

Background

Methods

Stimuli

Procedure

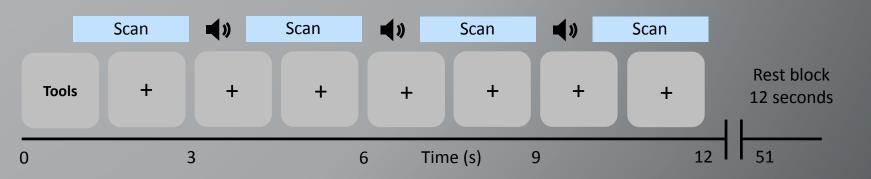
Behavioural data

fMRI paradigm

Univariate contrasts

Representationa

Similarity Analysis


Summary

fMRI paradigm

Visual Semantic Monitoring (TR=2s, TA=2s)

Auditory Semantic Monitoring (TR=3s, TA=2s)

Contents

Background

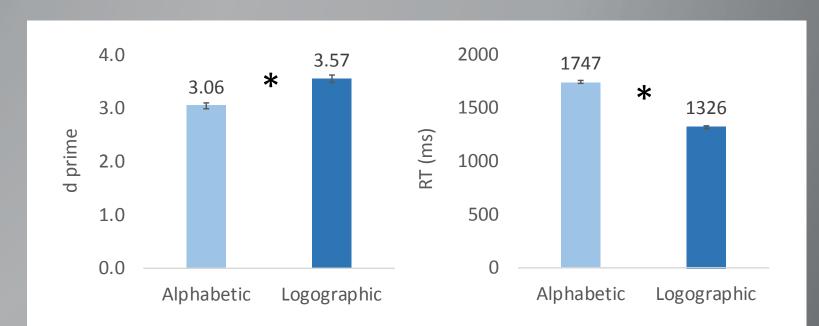
Methods

Stimuli

Procedure

Behavioural data

fMRI paradigm


Univariate contrasts

Representationa

Similarity Analysis

Summary

Visual Semantic Monitoring

Logographic benefits accuracy and speed of visual modality. Accuracy data possibly due to length of trial; 3s compared to 9s

Background

Methods

Stimuli

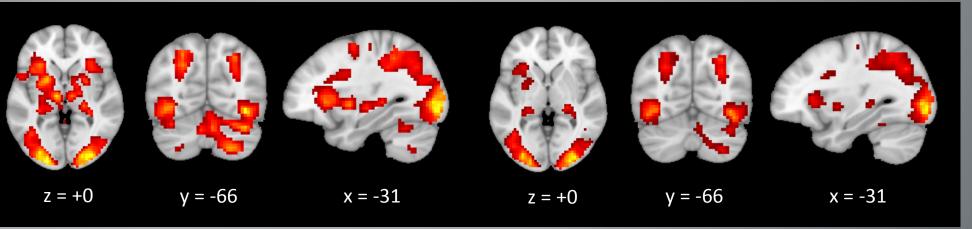
Procedure

Behavioural data

fMRI paradigm

Univariate contrasts

Representational


Similarity Analysis

Summary

Univariate contrasts - Visual

Alphabetic > Baseline

Logographic > Baseline

Shared activity in bilateral occipitotemporal and parietal cortices. Left precentral gyrus (PrG) and superior parietal lobule (SPL) more active for alphabetic. Left superior frontal gyrus and bilateral angular gyrus (AnG) and middle occipital gyrus (MOG) more active for logographic.

p < .001 uncorrected, p < .05 cluster-level corrected

Background

Methods

Stimuli

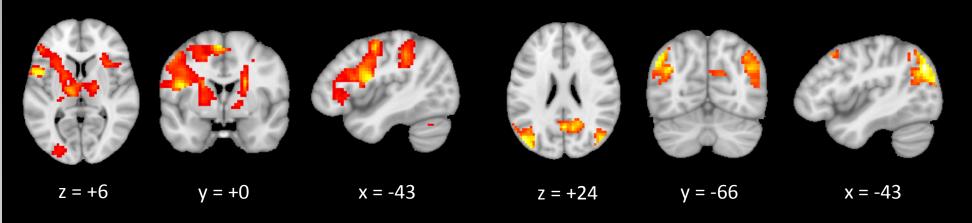
Procedure

Behavioural data

fMRI paradigm

Univariate contrasts

Representational


Similarity Analysis

Summary

Univariate contrasts - Visual

Alphabetic > Logographic

Logographic > Alphabetic

Shared activity in bilateral occipitotemporal and parietal cortices. Left precentral gyrus (PrG) and superior parietal lobule (SPL) more active for alphabetic. Left superior frontal gyrus and bilateral angular gyrus (AnG) and middle occipital gyrus (MOG) more active for logographic.

p < .001 uncorrected, p < .05 cluster-level corrected

Background

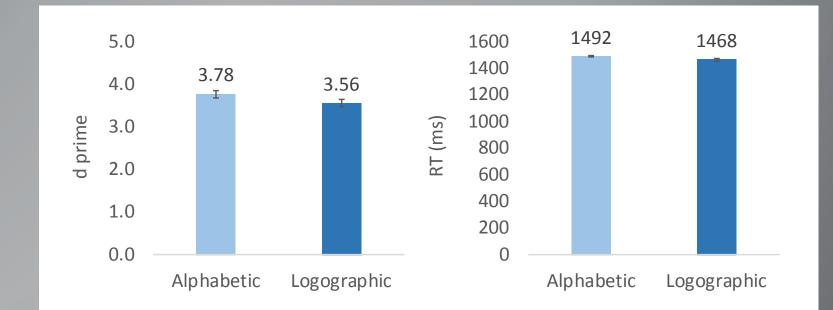
Methods

Stimuli

Procedure

Behavioural data

fMRI paradigm


Univariate contrasts

Representationa

Similarity Analysis

Summary

Auditory Semantic Monitoring

No differences in accuracy or speed for auditory modality

Background

Methods

Stimuli

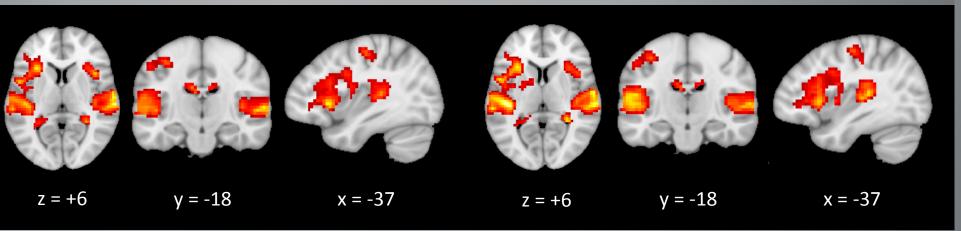
Procedure

Behavioural data

fMRI paradigm

Univariate contrasts

Representational


Similarity Analysis

Summary

Univariate contrasts - Auditory

Alphabetic > Baseline

Logographic > Baseline

Shared activity in left frontal and bilateral temporal cortices, including left precentral and postcentral gyrus, bilateral anterior insula, frontal operculum, superior temporal gyrus, and transverse temporal gyrus. No brain areas more active for alphabetic/logographic system.

p < .001 uncorrected, p < .05 cluster-level corrected

Background

Methods

Stimuli

Procedure

Behavioural data

fMRI paradigm

Univariate contrasts

Representational

Similarity Analysis

Summary

Representational Similarity Analysis

Contents

Backgroun	l
-----------	---

Methods

Stimuli

Procedure

Behavioural data

fMRI paradigm

Univariate contrasts

Representational

Similarity Analysis

Summary

Representational Similarity Analysis

Investigate whether neural patterns differ between trained writing systems

When participants read written/hear spoken trained words, are the evoked neural representations more sensitive to phonemic structure (phoneme identity and position) and/or orthographic structure for the alphabetic compared to the logographic script?

Contents

Background

Methods

Stimuli

Procedure

Behavioural data

fMRI paradigm

Univariate contrasts

Representational

Similarity Analysis

Summary

Representational Similarity Analysis

Investigate whether neural patterns differ between trained writing systems

When participants read written/hear spoken trained words, are the evoked neural representations more sensitive to phonemic structure (phoneme identity and position) and/or orthographic structure for the alphabetic compared to the logographic script?

Semantic monitoring

Contents

Background

Methods

Stimuli

Procedure

Behavioural data

fMRI paradigm

Univariate contrasts

Representational

Similarity Analysis

Summary

Representational Similarity Analysis

Investigate whether neural patterns differ between trained writing systems

When participants read written/hear spoken trained words, are the evoked neural representations more sensitive to phonemic structure (phoneme identity and position) and/or orthographic structure for the alphabetic compared to the logographic script?

Visual | Auditory

Semantic monitoring Visual | Auditory

Contents

Background

Methods

Stimuli

Procedure

Behavioural data

fMRI paradigm

Univariate contrasts

Representational

Similarity Analysis

Summary

Representational Similarity Analysis

Investigate whether neural patterns differ between trained writing systems

When participants read written/hear spoken trained words, are the evoked neural representations more sensitive to phonemic structure (phoneme identity and position) and/or orthographic structure for the alphabetic compared to the logographic script?

Visual | Auditory Alphabetic | Logographic

Semantic monitoring Visual | Auditory

Alphabetic | Logographic

Contents

Background

Methods

Stimuli

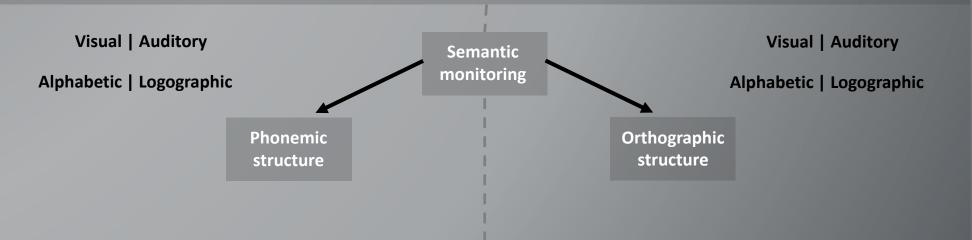
Procedure

Behavioural data

fMRI paradigm

Univariate contrasts

Representational


Similarity Analysis

Summary

Representational Similarity Analysis

Investigate whether neural patterns differ between trained writing systems

When participants read written/hear spoken trained words, are the evoked neural representations more sensitive to phonemic structure (phoneme identity and position) and/or orthographic structure for the alphabetic compared to the logographic script?

Contents

Background

Methods

Stimuli

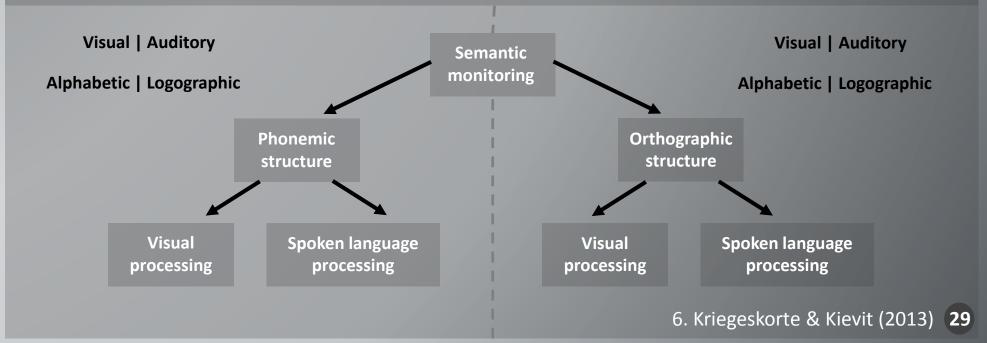
Procedure

Behavioural data

fMRI paradigm

Univariate contrasts

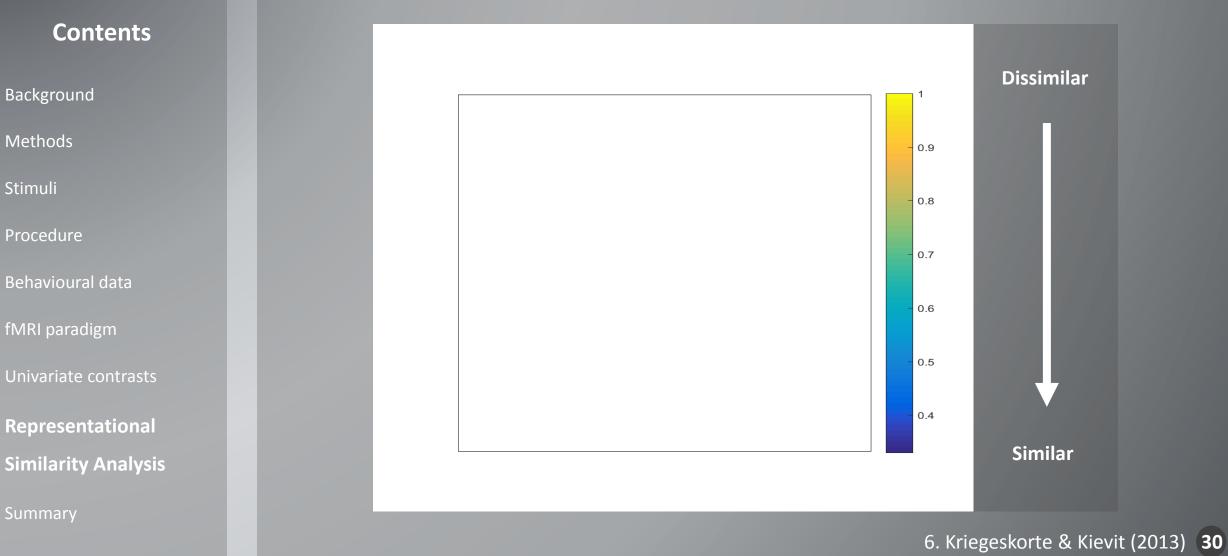
Representational


Similarity Analysis

Summary

Representational Similarity Analysis

Investigate whether neural patterns differ between trained writing systems


When participants read written/hear spoken trained words, are the evoked neural representations more sensitive to phonemic structure (phoneme identity and position) and/or orthographic structure for the alphabetic compared to the logographic script?

Construct prediction matrices

ROYAL
HOLLOWAY
UNIVERSITY
OF LONDON

Background

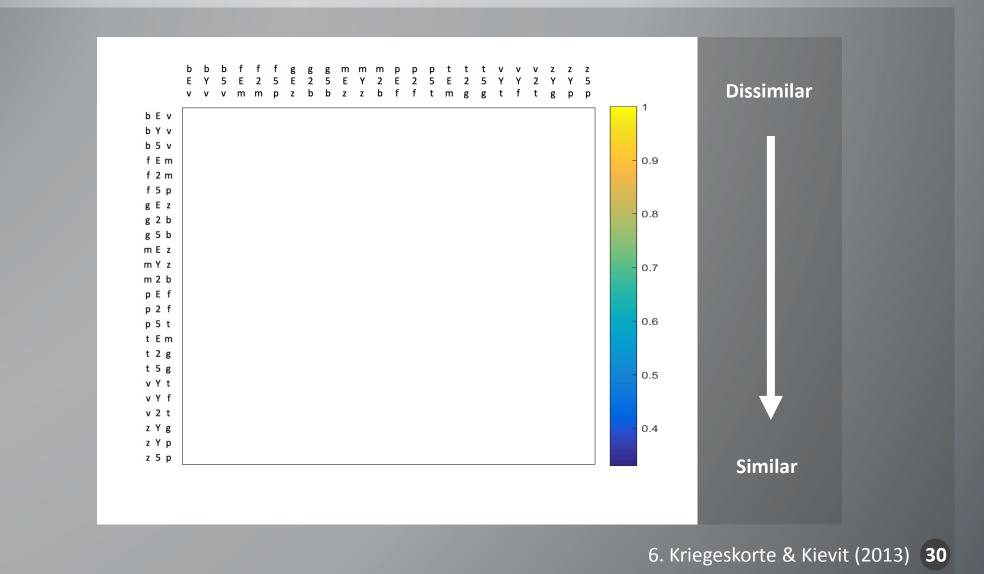
Methods

Stimuli

Procedure

Behavioural data

fMRI paradigm


Univariate contrasts

Representational

Similarity Analysis

Summary

Construct prediction matrices

Background

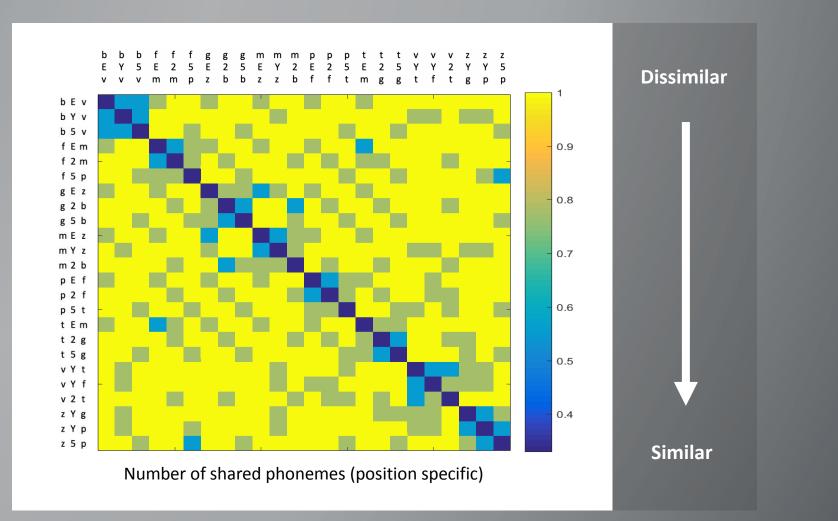
Methods

Stimuli

Procedure

Behavioural data

fMRI paradigm


Univariate contrasts

Representational

Similarity Analysis

Summary

Construct prediction matrices

Background

Methods

Stimuli

Procedure

Behavioural data

fMRI paradigm


Univariate contrasts

Representational

Similarity Analysis

Summary

Construct prediction matrices

Contents

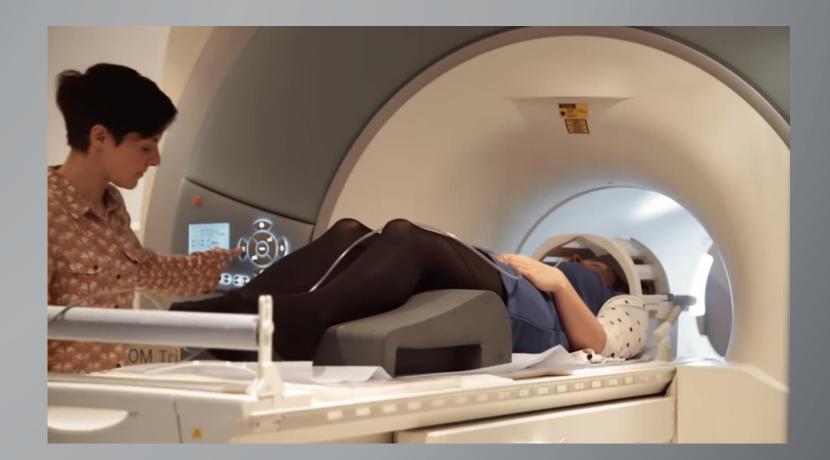
Background

Methods

Stimuli

Procedure

Behavioural data


fMRI paradigm

Univariate contrasts

Representational Similarity Analysis

Summary

Collect some data

Contents

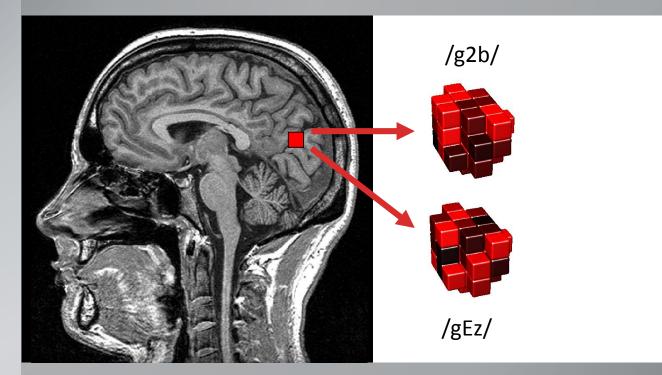
Background

Methods

Stimuli

Procedure

Behavioural data


fMRI paradigm

Univariate contrasts

Representational Similarity Analysis

Summary

Searchlight analysis

Slide content from Clare Lally

Contents

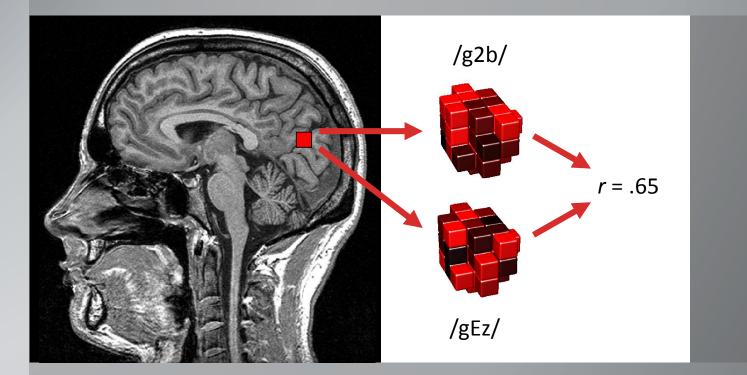
Background

Methods

Stimuli

Procedure

Behavioural data


fMRI paradigm

Univariate contrasts

Representational Similarity Analysis

Summary

Correlate observed activation patterns

Slide content from Clare Lally

Contents

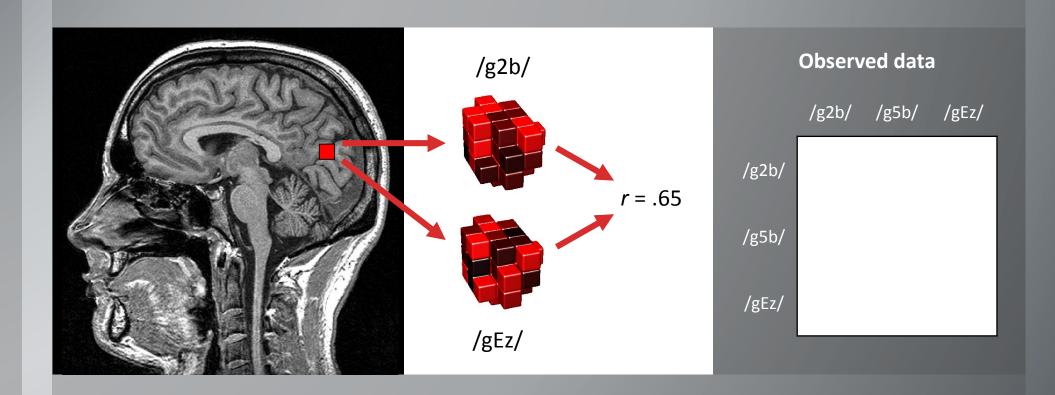
Background

Methods

Stimuli

Procedure

Behavioural data


fMRI paradigm

Univariate contrasts

Representational Similarity Analysis

Summary

Correlate observed activation patterns

Slide content from Clare Lally

Contents

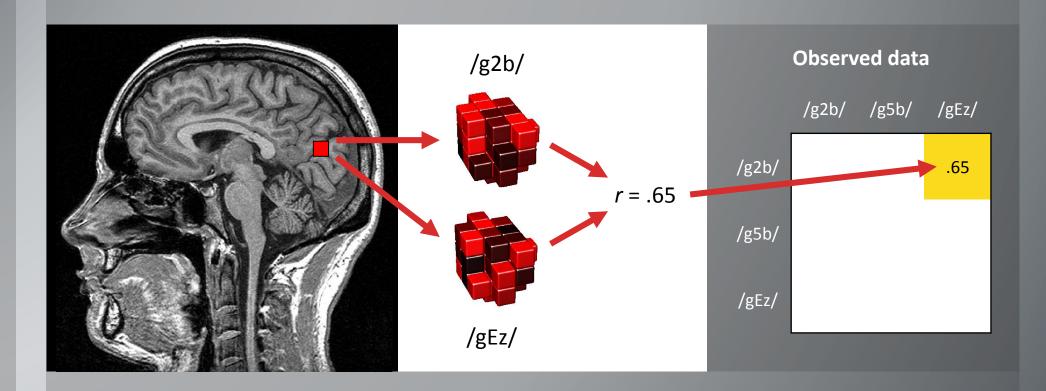
Background

Methods

Stimuli

Procedure

Behavioural data


fMRI paradigm

Univariate contrasts

Representational Similarity Analysis

Summary

Correlate observed activation patterns

Slide content from Clare Lally

Contents

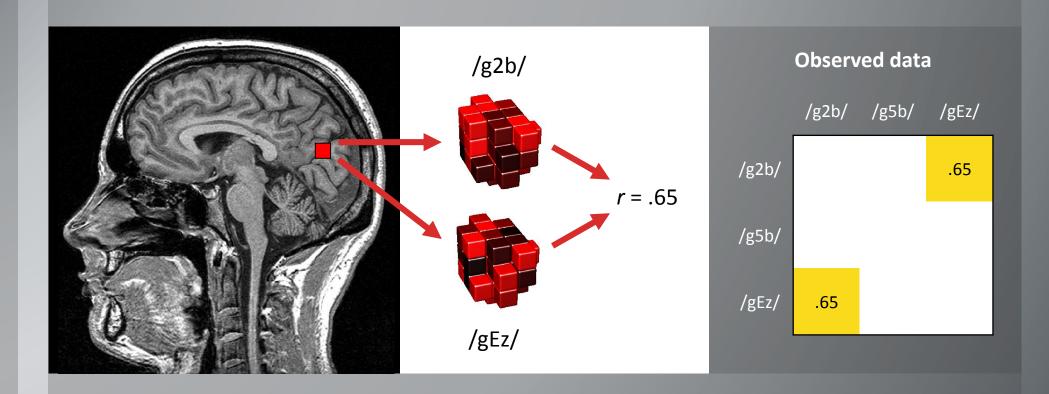
Background

Methods

Stimuli

Procedure

Behavioural data


fMRI paradigm

Univariate contrasts

Representational Similarity Analysis

Summary

Correlate observed activation patterns

Slide content from Clare Lally

Contents

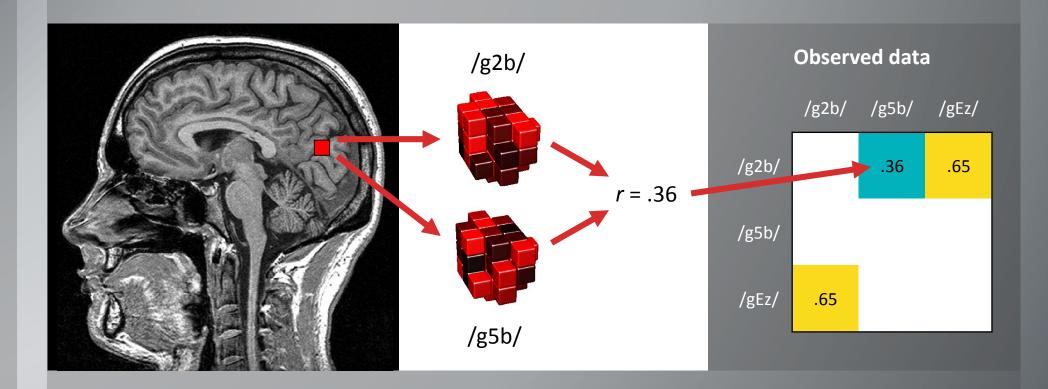
Background

Methods

Stimuli

Procedure

Behavioural data


fMRI paradigm

Univariate contrasts

Representational Similarity Analysis

Summary

Correlate observed activation patterns

Slide content from Clare Lally

Contents

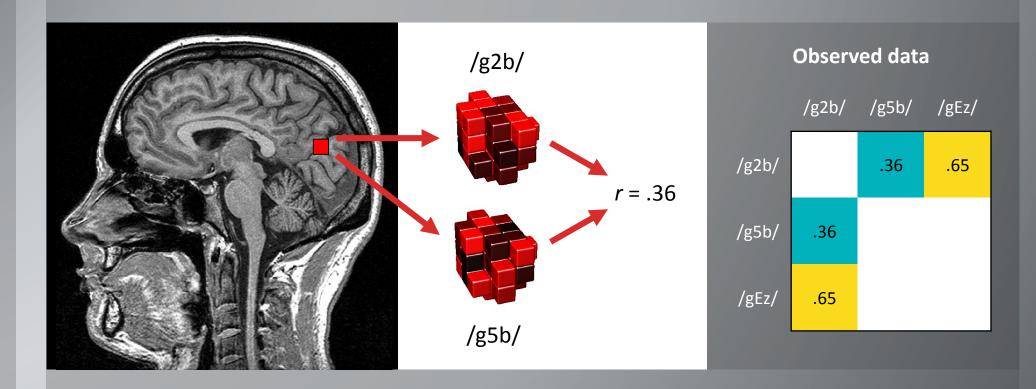
Background

Methods

Stimuli

Procedure

Behavioural data


fMRI paradigm

Univariate contrasts

Representational Similarity Analysis

Summary

Correlate observed activation patterns

Slide content from Clare Lally

Contents

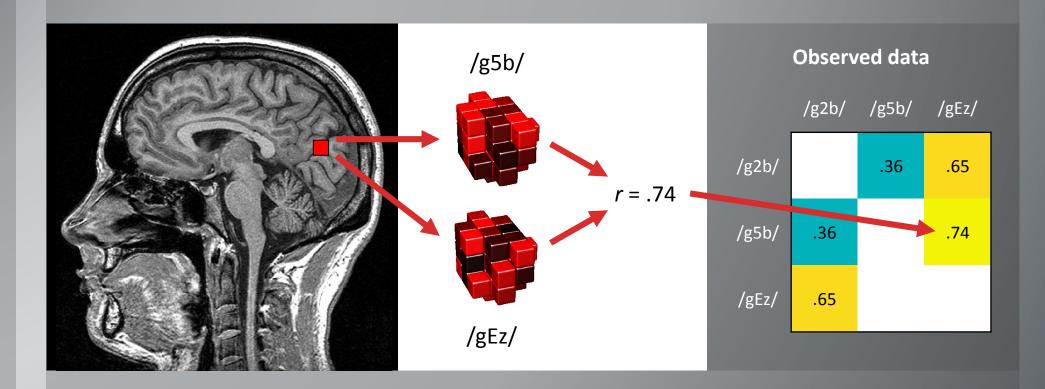
Background

Methods

Stimuli

Procedure

Behavioural data


fMRI paradigm

Univariate contrasts

Representational Similarity Analysis

Summary

Correlate observed activation patterns

Slide content from Clare Lally

Contents

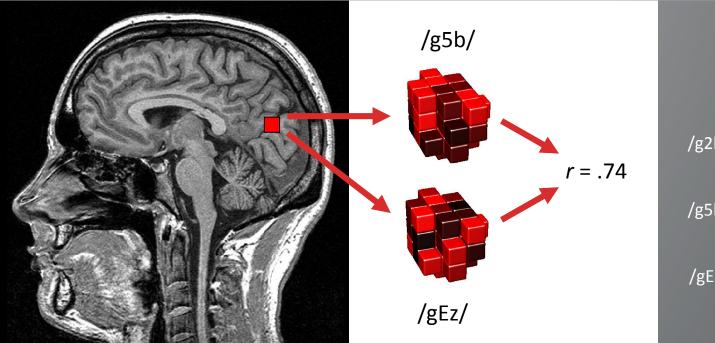
Background

Methods

Stimuli

Procedure

Behavioural data


fMRI paradigm

Univariate contrasts

Representational Similarity Analysis

Summary

Correlate observed activation patterns

Slide content from Clare Lally

Contents

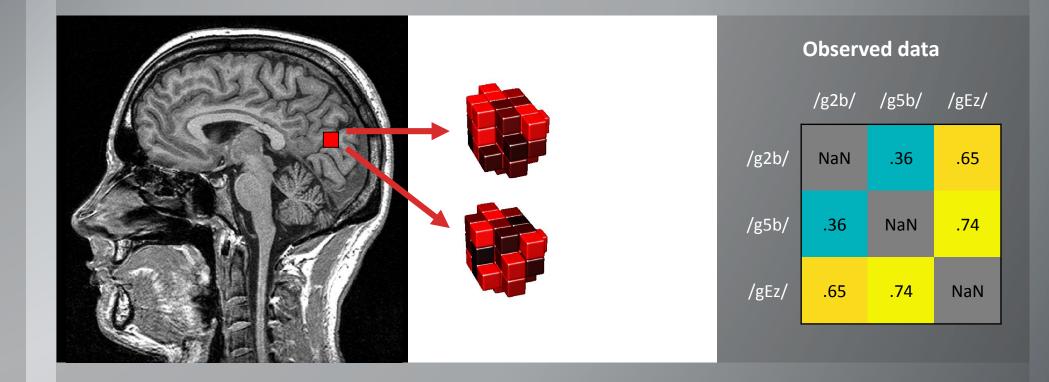
Background

Methods

Stimuli

Procedure

Behavioural data


fMRI paradigm

Univariate contrasts

Representational Similarity Analysis

Summary

Correlate observed activation patterns

Slide content from Clare Lally

Back	ground
------	--------

Methods

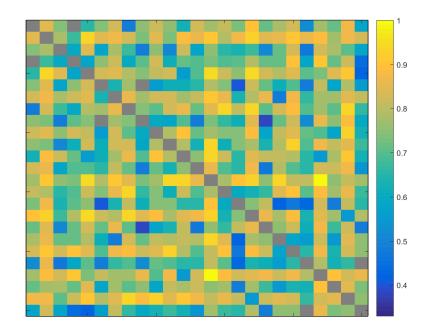
Stimuli

Procedure

Behavioural data

fMRI paradigm

Univariate contrasts


Representational

Similarity Analysis

Summary

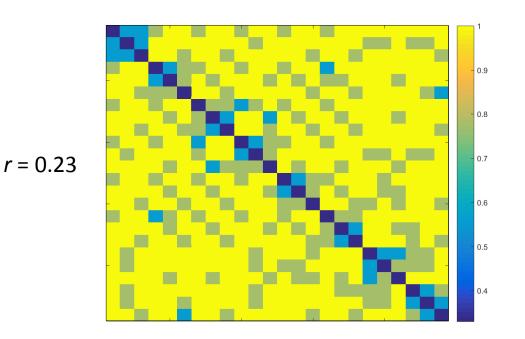
Correlate fit of prediction matrices

Observed data

Slide content from Clare Lally

Backgroun

Methods


- Stimuli
- Procedure
- Behavioural data
- fMRI paradigm
- Univariate contrasts
- Representational
- Similarity Analysis

Summary

Correlate fit of prediction matrices

Observed data

Prediction matrix (phonological)

r = 0.6

Slide content from Clare Lally

Backgroun

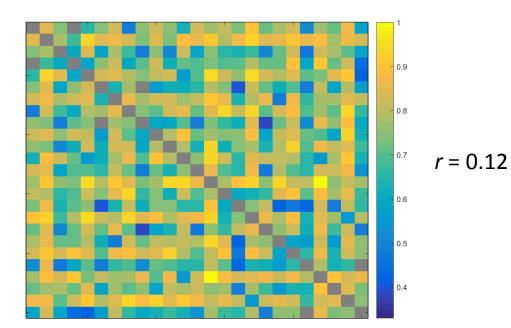
Methods

Stimuli

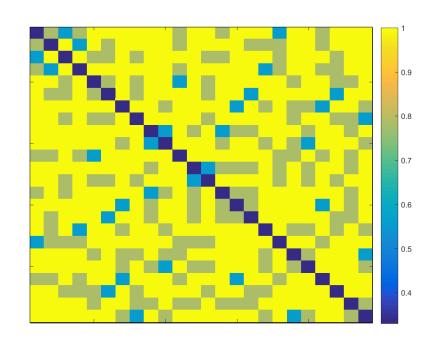
Procedure

Behavioural data

fMRI paradigm


Univariate contrasts

Representational Similarity Analysis


Summary

Correlate fit of prediction matrices

Observed data

Prediction matrix (orthographic)

Slide content from Clare Lally

Contents

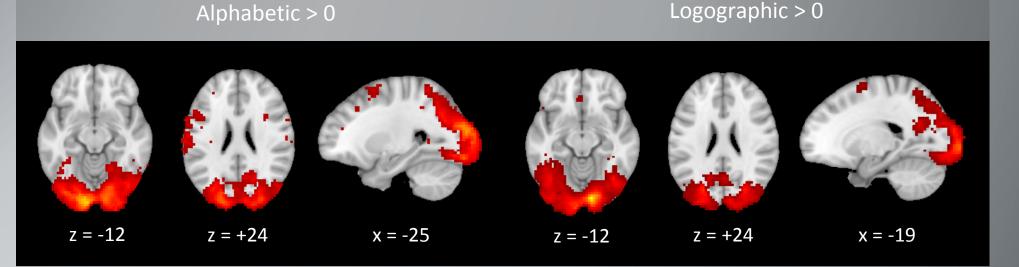
Background

Methods

Stimuli

Procedure

Behavioural data


fMRI paradigm

Univariate contrasts

Representational Similarity Analysis

Summary

Visual modality – Orthographic similarity

Orthographically structured representations found in regions that have been associated with written language processing and spoken language processing for alphabetic and logographic languages (very little in regions associated with spoken language processing for logographic)

Background

Methods

Stimuli

Procedure

Behavioural data

fMRI paradigm

Univariate contrasts

Representational

Similarity Analysis

Summary

Visual modality – Phonemic similarity

Phonemically structured representations found in both regions that have been associated with written language processing and spoken language processing areas for alphabetic. No phonemic structure exhibited by representations evoked by the logographic language.

Contents

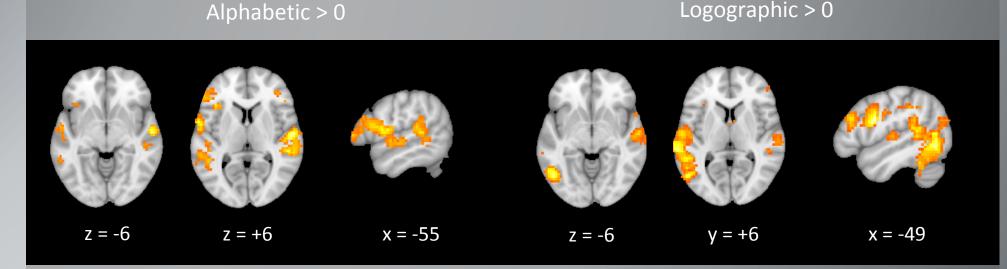
Background

Methods

Stimuli

Procedure

Behavioural data


fMRI paradigm

Univariate contrasts

Representational Similarity Analysis

Summary

Auditory modality – Phonemic similarity

Phonemically structured representations found in regions that have been associated with spoken language processing for the alphabetic language, and both regions that have been associated with spoken and written language processing for the logographic language.

Contents

Background

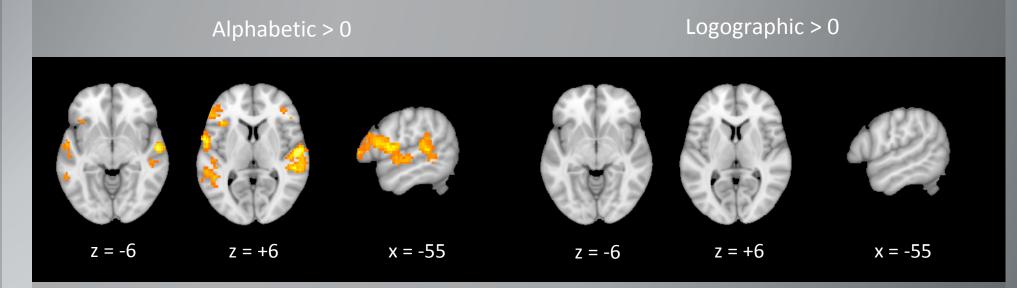
Methods

Stimuli

Procedure

Behavioural data

fMRI paradigm


Univariate contrasts

Representational

Similarity Analysis

Summary

Auditory modality – Orthographic similarity

Orthographically structured representations found in regions that have been associated with spoken language processing for the alphabetic language. No orthographic structure exhibited by representations evoked by the logographic language.

Contents

Background

Methods

Stimuli

Procedure

Behavioural data

fMRI paradigm

Univariate contrasts

Representationa

Similarity Analysis

Summary

Behavioural data

1

Contents

Background

Methods

Stimuli

Procedure

Behavioural data

fMRI paradigm

Univariate contrasts

Representationa

Similarity Analysis

Summary

Behavioural data

High orthographic transparency strengthens orthography-phonology mapping

- O-P mappings acquired and recalled more efficiently for alphabetic system
- Significantly higher accuracy and faster RT for O-P tasks, slower RT for O-S tasks

1

2

Contents

Background

Methods

Stimuli

Procedure

Behavioural data

fMRI paradigm

Univariate contrasts

Representationa

Similarity Analysis

Summary

Behavioural data

High orthographic transparency strengthens orthography-phonology mapping

- O-P mappings acquired and recalled more efficiently for alphabetic system
- Significantly higher accuracy and faster RT for O-P tasks, slower RT for O-S tasks

Low orthographic transparency strengthens orthography-semantics mapping

- O-S mappings recalled more efficiently for logographic writing system
- Significantly faster RT for O-S tasks, lower accuracy and slower RT for O-P tasks

1

2

3

Contents

Background

Methods

Stimuli

Procedure

Behavioural data

fMRI paradigm

Univariate contrasts

Representational

Similarity Analysis

Summary

Behavioural data

High orthographic transparency strengthens orthography-phonology mapping

- O-P mappings acquired and recalled more efficiently for alphabetic system
- Significantly higher accuracy and faster RT for O-P tasks, slower RT for O-S tasks

Low orthographic transparency strengthens orthography-semantics mapping

- O-S mappings recalled more efficiently for logographic writing system
- Significantly faster RT for O-S tasks, lower accuracy and slower RT for O-P tasks

Orthographic transparency does not appear to affect spoken language processing

- No differences between alphabetic/logographic when orthography not present
- Does not support orthographic effect on speech perception²

Contents

Background

Methods

Stimuli

Procedure

Behavioural data

fMRI paradigm

Univariate contrasts

Representationa

Similarity Analysis

Summary

Neuroimaging data

1

Contents

Background

Methods

Stimuli

Procedure

Behavioural data

fMRI paradigm

Univariate contrasts

Representationa

Similarity Analysis

Summary

Neuroimaging data

Left PrG and SPL more active for alphabetic languages when orthography present

Increased phonological processing for alphabetic writing system⁵

5. Taylor et al. (2013) **41**

Contents

Background

Methods

Stimuli

Procedure

Behavioural data

fMRI paradigm

Univariate contrasts

Representationa

Similarity Analysis

Summary

Neuroimaging data

Left PrG and SPL more active for alphabetic languages when orthography present

Increased phonological processing for alphabetic writing system⁵

2

1

Bilateral AnG and MOG more active for logographic system when orthography present

Increased semantic/phonological lexicon processing for logographic⁵

Contents

- Background
- Methods
- Stimuli
- Procedure
- Behavioural data
- fMRI paradigm
- Univariate contrasts
- Representationa
- Similarity Analysis
- Summary

Neuroimaging data

- Left PrG and SPL more active for alphabetic languages when orthography present
- Increased phonological processing for alphabetic writing system⁵

1

- Bilateral AnG and MOG more active for logographic system when orthography present
- Increased semantic/phonological lexicon processing for logographic⁵

No difference in activation for spoken language tasks where orthography not present

Contents

- Background
- Methods
- Stimuli
- Procedure
- Behavioural data
- fMRI paradigm
- Univariate contrasts
- Representationa
- Similarity Analysis
- Summary

Neuroimaging data

- Left PrG and SPL more active for alphabetic languages when orthography present
- Increased phonological processing for alphabetic writing system ⁵

1

Bilateral AnG and MOG more active for logographic system when orthography present

Increased semantic/phonological lexicon processing for logographic⁵

No difference in activation for spoken language tasks where orthography not present

Next steps: Paired-samples t-tests and ROIs analyses on RSA searchlight maps

ROYAL

Contents

Background

Methods

Stimuli

Procedure

Behavioural data

fMRI paradigm

Univariate contrasts

Representationa

Similarity Analysis

Summary

THANK YOU

Dr Joanne Taylor Dr Angelika Lingnau Dr Tibor Auer Professor Kathy Rastle

Royal Holloway, University of London

(1)

6

Contents

Background

Methods

Stimuli

Procedure

Behavioural data

fMRI paradigm

Univariate contrasts

Representationa

Similarity Analysis

Summary

Harm, M. W., & Seidenberg, M. S. (2004). Computing the Meanings of Words in Reading: Cooperative Division of Labor Between Visual and Phonological Processes. *Psychol Rev, 111*(3), 662-720.

2 Rastle, K., McCormick, S. F., Bayliss, L., & Davis, C. J. (2011). Orthography influences the perception and production of speech. *J Exp Psychol Learn Mem Cogn*, *37*, 1588-94.

References

3 Taylor, J. S. H., Davis, M. H., & Rastle, K. (2017). Comparing and validating methods of reading instruction using behavioural and neural findings in an artificial orthography. *J Exp Psychol Gen, 146*(6), 826-858.

• Mei, L., Xue, G., Lu, Z., Chen, C., Zhang, M., He, Q., et al. (2014). Learning to read words in a new language shapes the neural organization of the prior languages. *Neuropsychologia*, 65, 156-168.

5 Taylor, J. S. H., Rastle, K., & Davis, M. H. (2013). Can cognitive models explain brain activation during word and pseudoword reading? A meta-analysis of 36 neuroimaging studies. *Psychol Bull, 139,* 766-779.

Kriegeskorte, N., & Kievit, R. A. (2013). Representational geometry: integrating cognition, computation, and the brain. *Trends Cogn Sci*, 17(8), 401-412.

OF LONDON

Contents

Background

Methods

Stimuli

Procedure

Behavioural data

fMRI paradigm

Univariate contrasts

Representational

Similarity Analysis

Summary

3T Siemens scanner

192 trials per run

Languages include 24 items Each item presented 4 times

Block-related design

2 sessions including 8 alternating runs
4 runs per session: 2 visual / 2 auditory
12 blocks per run = 16 trials per block
2 languages alternating between blocks
4 target categories x 3 = one per block
2500ms stimuli + 500ms ITI per trial

fMRI paradigm

Contents

Background

Methods

Stimuli

Procedure

Behavioural data

fMRI paradigm

Univariate contrasts

Representationa

Similarity Analysis

Summary

Visual Semantic Monitoring

Continuous imaging TR = 2000ms TA = 2000ms

Auditory Semantic Monitoring

Sparse imaging TR = 3000ms TA = 2000ms

fMRI paradigm